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Analysis and Intrinsic Properties of the General

Nonuniform Transmission Line

EMMANUEL N. PROTONOTARIOS, MEMBER, IEEE, AND OMAR WING, MEMBER, IEEE

Abstract—A new formulation for the analysis of the general nommi-

form transmission line is presented. A characterization of the line in terms

of its ABCD parameters is given. Explicit formulas for these parameters

are obtained from which any network function can be calculated to any

degree of accuracy. The new formulation leads to a description of the line

in terms of a Sturm-Liouville equation from which all of the natural fre-

quencies of the line can be found and their distribution bounds and asymp-

totic behavior specified. The ABCD parameters are shown to be entire

functions of order 1 aud genus 1.

L INTRODUCTION

N

ONUNIFORM transmission lines have been used

extensively as impedance transformers and more

recently as resonators [1], [2] filters [3], and delay

equalizers [4]. Except for a few special cases, and for cases

in which the lines are “smooth,” no closed form solution

exists. The purpose of this paper is to present a new formula-

tion from which a general method of analysis and the in-

trinsic properties of an arbitrarily tapered transmission

line are deduced. In particular, a characterization of the line

in terms of its ABCD parameters is offered. Explicit formu-

las of these parameters are obtained from which any net-

work function can be evaluated to any degree of accuracy.

The new formulation leads also to a description of the line

in terms of a Strum-Liouville equation from which all of

the natural frequencies of the line can be found and their

distribution, bounds, and asymptotic behavior specified.

Finally, the analytic properties of the ABCD parameters are

derived, and it is shown that the parameters are all entire

functions of the complex frequencies of order 1 and genus 1.

There exists a large amount of excellent literature on non-

uniform transmission lines [23 ]–[25 ] and propagation

through nonuniform layers [26], [27]. Some of these

papers tackle the analysis problem for a given transmission

line through integral equation formulations without extract-

ing the properties of the network in general. Our purpose

here is to present an analysis that would enable us to ex-

tract some intrinsic properties of the general nonuniform

lossless transmission line.

There exists also a large number of papers on the synthe-

sis of nonuniform transmission lines [23], [28 ]–[34 ]. The

authors have also considered the synthesis problem in an-

other paper [20 ] where they present realizability conditions

in the frequency domain.
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~A~
Fig. 1. A scetion of a nonuniform losslesstransmission line.

H. CHARACTERIZATION-EXPLICIT FORMULAS

FOR ABCD PARAMETERS

Consider a section of nonuniform lossless transmission

line (Fig. 1) having a series inductance per unit length l(x)

and a shunt capacitance per unit length c(x), O< x < A, where

X is the length of the line. Except for the obvious restriction

that l(x) and c(x) be non-negative everywhere, no other re-

strictions are imposed on l(x) and c(x). Indeed, both may

have impulses so that lumped elements as well as distributed

elements are allowed along the line.

We choose to study the terminal behavior of the line in

terms of its ABCD parameters. Let the length k be divided

into n intervals of equal length Ax= X/n. The ABCD param-

eters of the lcth elementary section are

The overall ABCD parameters are

AB

[1
nAh Bh

lim ~ [1CD= H., J7, D.”

Expanding the product and replacing sums by integrals, we

get the explicit formulas

.

n=]

s

A

B=s l(x)dx + S S bnS2°
o n= 1

J
x m(7=sc(x)dx + s ~ CnS2n

o ns 1

(1)

(2)

(3)

D=l+jjd.s2” (4)
n= 1
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In a physical line, l(x) and c(x) are not identically zero and

l(x)> O and c(x)> O, so that

an>O, b.>O, cjt>02 and d*>O.

Moreover, let l(x) and c(x) be bounded so that

l(z) < LO and c(z) < Co.

We have, by integration,

(LOC,A’)”
a%<

(2n) !

~ < (LoCok’)”LoX
n

(2?2+ 1)!

(L,C,X’)WC,X

Cn< (2.+1)!

d < (LoCo~2)”
n

(2n) ! “

Therefore, the four series (l), (2), (3), and (4) are all uni-

formly convergent and the ABCD parameters are entire

functions ofs.

Having the explicit formulas of the ABCD parameters,

we can now evaluate any network function of the line,

terminated or unterminated. For example, the input im-

pedance is (AZI,+B)/(CZ~+ D), where Z~ is the terminating

impedance. The input reflection coefficient is [(RC— A)Z~
+(RD – B)]/[(RC+A)ZL+(RD+ B)], where R is the source

impedance. Note that in contrast with the previous formula-

tion where the reflection coefficient and the input impedance

must be obtained from the solution of nonlinear differential

equations [5], [6] the present formulation leads to explicit

expressions which can be evaluated to any desired degree of

accuracy. Moreover, l(x) and c(x) need not&e continuous

functions of x. It should also be noticed that the series (l),

(2), (3), and (4) for A, B, C, and D are alternating for s=jti

and they are quite rapidly convergent for frequencies small

compared to the smallest natural frequency of the line short

circuited at both ends. For large frequencies the asymptotic

formulas developed in later sections of this paper should be

used. For intermediate frequencies the series (l), (2), (3),

and (4) may not be as rapidly convergent as the iterative

procedure presented in the literature [23 ]-[25] based on a

Volterra integral equation formulation. Yet, in contrast with

the latter, it gives explicit formulas and it should mainly be

viewed as a method which enables us to extract general

analytical properties of the nonuniform lines such as the

ones presented in the later sections of this paper. The pres-

ent method is also useful as a computational means since

it can very easily be incorporated in a computer program.

Note also that the coefficients {an }, {h}, {C.), and {d. }

may be used for the computation of the natural frequencies

of a section of nonuniform line with an LC-impedance ter-

mination as described in Section 7. The derivation of the

series for A(s), B(s), C(s), and D(s) as outlined here is ex-

tremely simple. The step-by-step method of Schelkunoff

[19] would yield identical reesults. Similar results for RC

nonuniform lines have been presented by the authors [35],

and by Hellstrom [22] independently.

III. THE STURM-LIOUVILLE EQUATION

To gain a deeper insight into the properties of the gen-

eral nonuniform line, we shall transform the usual tele-

graphists’ equations into a Sturm-Liouville equation. To

this end, we make an important change of variables. We let

L(x) = f “l(~)dy (9)
o

C(x) = ~ ‘c(y)dy (lo)
o

L(x) is the cumulative inductance along the line, and C(x)

is the cumulative capacitance. Let the total inductance of

the line be LT and the total capacitance be CT. Clearly, we

have L(x) =LT and C(X)= CT.

It is convenient to express C as a function of L. We define

a function u(L):

C = cr(L) = u(L – O), for O< L<LT

u(o) = o

U(LT) = CT (11)

so that a(L) implicitly specifies the nonuniformity of the

line. Note that

u’(L) = du/dL = c/1 = l/K2 (12)

where K(L) is the “local” characteristic impedance along the

line. u(L) is a nondecreasing function of L and, therefore,

it always has a unique inverse.

L = T(C), C G (O, C,) (13)

T’ (C) = dr/dC = l/c = K2. (14)
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Note that lumped shunt capacitors correspond to jumps of

u(L) and lumped series inductors correspond to jumps of

7(C) (Fig. 2). For an LC ladder network, u(L) is piecewise

constant (Fig. 3). Using a(L), we now have a unified de-

scription of general LC lumped ladder networks or distrib-

uted networks or mixed structures. The spatial variable has

been suppressed.

In terms of L and C, the usual telegraphists’ equations on

the voltage V and current 1 along the line are transformed

into Sturm-Liouville equations

d2~

— – S%’(L)V = o
dL,2

d21

——

dC2
s%’ (C)I = o.

(15)

(16)

Note that the equations are characterized by a’ and # so

that nonuniform lines with the same C= c(L), L@O, L~),

have identical electrical characteristics at the terminals, i.e.,

they are equivalent. For example, the following two non-

uniform lines have the same terminal behavior

1) l(x) = e’, c(z) = 2e–”, h = ln2

4
2) 1(z) = 2(X + 1), c(z) =

(X+1)’
7 A=d%–1.

IV. NATURAL FREQUENCIES

Walker and Wax obtained an iterative scheme to compute

the natural frequencies of a tapered line with a reactive

termination [5]. Since any reactance can be represented by

an LC ladder of the Cauer form, the reactive termination

can be incorporated into the function u(L) or 7(C) in the

description of the nonuniform line and we may henceforth

regard all lines as unterminated.

We shall presently show that the natural frequencies of a

nonuniform line are the eigenvalues of a Sturm-Liouville

problem with zero boundary conditions and are in fact

related to the zeros of the ABCD parameters.

The zeros and poles of an impedance function are the

short-circuit and open-circuit natural frequencies, respec-

tively, of the network at the pertinent driving point. Since

A(s)/C(s) = input impedance with output open-circuited and

B(s)/D(s) = input impedance with output short-circuited, the

zeros of the parameters A(s), B(s), C(s), and D(s) are the

natural frequencies of the networks of Fig. 4(a), (b), (c), and

(d), respectively.

Denote by {a~}, {p.}, {~~}, and {&), n=l, 2, . . ~,

respectively, the real frequencies for which the A(joJ), B(jo),
C(jo), and D(JJ) vanish. So that, 1) {a.}, n= 1, 2, . ~ ., are

the natural frequencies of the section of the lossless trans-

mission line short-circuited at the sending end and open-cir-

cuited at the receiving end, [Fig. 4(a)], 2) {&}, n= 1, 2, . . .,

are the natural frequencies of the line short-circuited at both

ends [Fig. 4(b)], 3) {T. ~ are the natural frequencies of the

line open-circuited at both ends [Fig. 4(c)], and 4) & are the
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Fig. 3. The function C=@) for the ladder network (b).

natural frequencies of the line which is open-circuited at the

receiving end [Fig. 4(d)]. In the following we will be referring

to the natural frequencies of the different configurations of

the line as zeros of one of the ABC or D parameters.

With respect to Fig. 4(b) and from (15), the zeros of

B(s) are the eigenvalues of the following

problem

I
d2J,7~+IJ2U’(L)V = O

v(o) = V(L.) = o.

Sturm-Liouville
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Fig. 4. The boundary conditions.

(1)1 I (2) (2)1 l(l)

Fig. 5. A back-to-back arrangement of a seetion of the line.

Similarly, the zeros of C(s) are the eigenvalues of the fol-

lowing Sturm-Liouville problem

[

d21

~ + /.L’#(c)I = o

[1(0) = I(CT) = o.

As to the zeros of A(s) and D(s), we consider Fig. 5 which is

a back-to-back arrangement of identical halves coinciding

with the given section of the nonuniform LC transmission

line of Fig. 4.

Let A’, B’, C’, and D’ be the chain parameters of the two-

port in Fig. 5. Then

B’(s) = 2A (S)B(S) (17)

c’(s) = 2C(S) D(s). (18)

It is known that the zeros of A(s) and l?(s), as well as the

zeros of C(s) and D(s), interlace, so that

and

o<&< ’yl<&<y2 <... (20)

Consequently, from relations (17), (18), (19), and (20) it fol-

lows that the zeros of A(s) are the odd-order zeros of B’(s),

and the zeros of D(s) are the odd-order zeros of C’(s).

Thus, the zeros of A(s) are the odd-order eigenvalues of the

following Sturm-Liouville boundary value problem with zero

boundary conditions at both ends:

d2v

~ + /.AT’(L)v = o

(21)

V(0) = V(2LT) = O

where for LT <Ls 2LT, u’(L) = IT’(2LT –L).

Whereas the zeros of D(s) are the odd-order eigenvalues of

the following Sturm-Liouville system:

~ + p%’(c)r = o

0<c52f2T

1(0) = 1(2CT) = O

where fOr (_%< C< 2CY, T’(c)= T’(zCT– c).

(22)

V. BOUNDS ON THE NATURAL FREQUENCIES

In the previous section, the zeros of the ABCD parameters

were identified with the eigenvalues of boundary value prob-

lems of the form

/’ + ~’p(z)y = O, Y(0) = v(a) = 0. (23)

The mathematical literature on eigenvalue problems is vo-

luminous [7]-[18 ]. We shall make liberal use of many

results which are pertinent to the problem at hand.

5.1: Arbitrary nonuniform lossless transmission line with

specified total inductance LT and total capacitance CT.

In (23) denote J~P(x)dx= M. It is well known [7], [14]-

[18 ] that the smallest eigenvalue P,[p] of the boundary value
problem (23) satisfies the inequality

(24)
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For the problem at hand and with respect to the first zero of

B(s) compare the differential equation (15) with (23). We

have: x-L, pa.’, a*LT and M_j&u’(L)dL= CT.
Therefore, applying (3.20) we have:

(25)

This inequality is the best possible, i.e., there exist tapers for

which the value of ~1 is arbitrarily close to 2/V’LTCT. In

fact, the equality is attained for the T-network in Fig. 6.

It is known [7], [14]–[18] that the higher-order eigenvalues

of the boundary value problem (23) satisfy the inequality

(26)

Comparing (15), (16), (21), and (22) with (23) we easily get

2n–1
%, & 2 —

VZTCT

(27)

2n
P., ‘Y. 2 —

~LTCT
(28)

n=l, z,...

Equalities are attained for an, P., 7., and & for the ladder

networks in Fig. 7(a), (b), (c), and (d), respectively.

5.2: As a second case, suppose that the only thing specified

about the taper is A= johV’~ dx ~ LTCT. Without any addi-

tional information about the taper it is not difficult to con-

struct examples showing that the product 61A can get arbi-

trarily small. However, the additional requirement that c/1

is a non-negative monotonic function of L~L1 [0, LT] is suffi-

cient to produce a lower bound. In fact using the results of

Nehari [17] about the eigenvalues of the boundary value

problem (23) in the Sturm-Liouville equations (15) and (16),

we get, respectively,

(29)

Note that these inequalities are the best possible with the

present constraints [17]. In general, if u’(L) ~L1[O, LT] and if

the interval [0, LT] can be decomposed into k+ 1 on which

u’(L) = c/1 is a monotonic function of L, the zeros obey the

following inequalities

%, an > (n — ~ — 1)7r/2A; & T. > (n — k)7r/2A
(30)

for n > k.

5.3: Let LT >0, CT> O, KM> O, Km> O be numbers sub-

ject to the condition

Consider the class of LC nonuniform transmission lines with

totaI series inductance LT, totaI shunt capacitance CT, and

local characteristic impedance K(x) = v’l(x)/c(~ such that

+

o 1 0

Fig. 6. The ladder for which & is minimum.

LT 2LT 2LT 2LT
—.

2n-1 2n-1 2n-1 2n-1

~-–––––~

lCT
~=1

0 1 1 1 0
(a)

~-----#-

LT/n LT/n LT/n

(c)

2LT 2 LT

G 2 n-l 2n-1

~

o

(d)

Fig. 7. The ladders for which the natural frequencies are minimized.

for OS XS k. Denote this class of nonuniform Iossless lines

by T(LT, CT, KM, KJ. Since c’(L)= c/1= l/Kz(L) we have

1 1
— < u’(L) S —
KM2 &2 ‘

i.e., all the points of the plot of the function C= u(L) must

lie inside the parallelogram whose sides have slopes I/Km’
and l/KM2 and two of its vertices coincide with the origin

and the point (L~, CT), respectively (Fig. 8).

Consider the zeros of the ABCD parameters as functional

of u(L). The problem is to find for what functions u(L) CT
(LT, CT, KM, Km) these zeros attain extreme values and to
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c

t

iiq Q LT

Fig. 8. Diagram for the class Z’ (L~, CT, KM, Q.

determine the corresponding upper and lower bounds if they

exist. We can give the answers to this question using Krein’s

results [16] for the eigenvalues of the boundary value prob-

lem (23) where Izs p(x)< H.
The following theorem states the results.

Theorem 1:

For an LC transmission line GT(L~, Cy, K,u, KJ the maxi-

mum and minimum values of the ABCD parameters are

given by the following relations:

a) max a.(a) = max 6.(0)

(2?2 – l)Klf ~ ~ , g— ——
Q ()K. Q

(31)

min a.(a) = min &(u)

(2rt-l)Km ~ ILg
——

()KM q
(32)

!7

2nK~l
b) max D.(u) = max ~n(a) =

()
--+~,; (33)

~nK~
min &(u) = min -y.(u) =

()
~+~>~ (34)

q

where, with reference to Fig. 8,

‘(L)=K%={:‘0’‘e(”’Q)~’37)for L G (Q, Lz.)

Note that, for this case, the plot of the function C= u(L) is
the broken line OIIP of Fig. 8.

In general, the minimum of an(u) and the maximum of

&(u) are reached “uniquely” for the following taper

v’
l(L)

K(L) = —
c(L)

I
KM for L–—

:2,’ (“’ A)

2kL~

(

Q 2q+Q
= Km for L–—G — ————

j~–1’ z~–1 )
(38)

2n–1

I 2kLT

(

2LT – Q 2LT

)
K~~ for L–—C 2n_1 J —

2n—1 2n–1

where k=O, 1, 2, . . ., (n—2); and

dl(L)
K(L) = —

c(L)

[

2(~– l)LT Q
KM for L –

()
E o,———

2n–1 2n–1
.

2(n- l)LT

(

Q LT “

)

(39)

Km for 1. – E——
2n–1 2n–1’ 2n–1

The upper bound of al(u) and the lower bound of 81(U)are

“uniquely” attained for C= u(L) whose plot is the broken

line OTP of Fig. 8, i.e., for

The maximum of an(u), and simultaneously the minimum of

&(a), are reached for /l/c defined as in (39) and (40) with

KM and Km interchanged as well as Q and q.

b) The minimum of BI(w) and maximum of 71(u) are

achieved for the same symmetric taper:

dl(L)
K(L) = —

c(L)

and @(p, 19)(OSp, 0< m ) is the least positive root of the

equation
.

tan @tan (pO@) = p (36)

(thus, “<4(P, I9)<7i-/2).
a) The lower bound of CM(U)and the upper bound of 81(u)

. .

()K.M for LE O,:

K.
‘or ‘&+:)

(41)

.-
are attained “uniquely” for d~l with a bang-bang x varia- Note that the plot of the function C= u(L) is the broken line

tion, i.e., for OKAMP in Fig, 8.
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In general, if we divide the interval (O, G) into n equal

parts and in each of them define K(L) analogously to rela-

tion (41) using however q/n and Q/n instead of q and Q,

we get the “unique” function for which fl~(u) reaches its

lower bound and 7Ja) its upper bound.

If we interchange Q with q and KM with Km in this defini-

tion we get the “unique” taper GT(LT, CT, KM, KJ for which

pn(a) reaches its maximum and T.(u) its minimum value.

Note that for pi(u): maximum and ~l(u): minimum the func-

tion C= u(L) is the piecewise linear curve O~ANP of Fig. 8.

Remark 1: If al is known, using the bounds (3 1), (32), and

the relation

~ l/ai’ = al
‘i=1

we can find a sharper result for the interval where al must

lie, i.e.,

1

0.2337Q2
al —

m+)]’
1

< (X12< (42)
0.2338q2

“-F’(%W’
where

0.2337s~–1=~
1

.=, (2n – 1)’ “

Similar results can be obtained for the first zero of B(s),

C(s), and D(s).

Remark 2: The special case where KM= w corresponds to

that in which lumped series inductances are allowed. The

bounds on the zeros, an, &, ~n, and & can be obtained as

before. The case where Km= O corresponds to that in which

lumped shunt capacitances are allowed. A detailed discus-

sion of the bounds on the zeros of both cases is found in [20].

VI. ASYMPTOTIC BEHAVIOR OF THE ABCD PARAMETERS

Consider a nonuniform lossless transmission line for

which the local characteristic impedance K(z), expressed as

a function of the “electric” length z= Jo*til(x’)c(x’)dx’, has

a continuous second derivative. Using the Liouville trans-

formation [7], [11 ] we can transform the voltage tele-

graphists’ equation (15) into a differential equation of the

form

‘u” + [P2– dz)l~ = 0.

Using the mathematical results for the eigenfunctions of a

differential equation of this form [11] we can deduce the fol-

lowing asymptotic expressions for the ABCD parameters on

the real-frequency axis; for co+ GO:

(

z

()

1
A (ja) = —COSAW+O —

K,
(43)

w

——

()B(jco) = VK,K, sin AU + O ~
a

1

()

1
C(jd) = —

4K,K2
sin Au+O — (45)

OJ

d

x;

()

1
D(jo) = —-cos Au+O -

KI u

(44)

(46)

where

sAKI = K(0), Kt = K(k), and A = @dx.
o

Many authors have noted results of this kind before for

LC or RC lines [19 ]–[22]. If the line contains discontinuities

of lumped L’s or C’s we find the asymptotic behavior of the

ABCD parameters by dividing the line into sections for

which the above result is valid and multiply the correspond-

ing ABCD matrices.

Using the frequency transformation s4@, and referring

to some results for RC lines [20], [21], we can also make the

following statements:

Theorem 2:

For a finite section of a nonuniform lossless transmission

line with a piecewise twice differentiable u’(L), which con-

tains n lumped elements, inductances and capacitances (ex-

cluding possibly a shunt capacitor at x = O and a series in-

ductor at x= x), the asymptotic behavior of A(s), for larges,

is

A (s) N KsneA2a, S+cn, I arg(s) I < ~ (47)
4

where K is a positive constant and

sA

A= Wqz)c(z) ah = sO’”dU’(L)dL
o

sLT (48)

. K(L)dL.
o

SimiIarly,

B(s) w K1snl–IeA2”

C(s) N K2s”2+1eA’s (49)

D(s) N Kz8naeA’8

for s-+ @, I arg (.s)1S m/4 where Kl, K,, K3 are positive con-
stants and nl, nt, rz3are the number of lumped elements ex-

cluding possibly: for nl, shunt capacitors at both ends; for

n2 series inductors at both ends; and for n3, a series inductor

at x= O and a shunt capacitor at n= A.
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Corollary 1:

For real s-+ ~

log A (s) N log B(s) N log C(S) w log D(s) N As. (50)

Theorem 3:

The ABCD parameters of an arbitrarily tapered lossless

transmission line are entire functions ofs of:

1) order P= 1,

(s
1

2) type u = A2 =
)

w@)C(~) dx 2
0

‘(lLTK(L)dLY,
and

3) genus= 1.

They can be expanded into infinite products as follows:

()a) A(s)=fi 1+<
n=l %2

(51)

m
with O<al<az <as<.” “anda~~x

for n ~ @ (52)

()b) B(s)= L~sfi l+;
n=1 n

with 0<@l<fi2<@8<”. ”and i3.NT~n

(53)

()c) c(s) =cTsfi 1+X
n=l ‘Yn2

(55)

()d) D(s) =fi 1+8!
n=1 n

(57)

for n 4 @. (58)

VII. COMPUTATION OF THE NATURAL FREQUENCIES

The sums of the even negative powers of the zeros of the

ABC’D parameters can be expressed in terms of the coeffi-

cients of the series (l), (2), (3), and (4).

Specifically we have:

. 1 ml

~~ + = a,3 – 3a,a2 + 3a3, etc. (59)

(60)

Similar relations hold for the zeros of D(s) and C(s).

An approximate method for the computation of the zeros

of the ABCD parameters can be based on (59) and (60).

Taking under consideration that, beginning with a suffi-

ciently large subscript, all zeros may be regarded as known,

i.e., as equal to their known asymptotic values, then an alge-

braic system of equations is obtained from (59), (60), etc.,

for the first few zeros.

To be specific, suppose that we want to compute approxi-

mately the first few zeros of B(s). The easiest asymptotic esti-

mate of p. for large n, is p.~m/A.

Suppose that this asymptotic formula gives a “good” ap-

proximate value of L beginning with n= 4. Then we will

have for the first three zeros of B(s) the following algebraic

system.

b1A2
——

()
———
b, r

f(2, 4) = A

b,’ – 2bp—
LT

- g;= b“ ;T2b2
n

— ()~2f(4,4) == M
T

(61)

()
A3

—— {(6, 4) z N.
ii-
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Where I(s, v) is the modified Riemann’s Zeta function

defined as follows

1
f(s, v) = ~

.=0 (n+ v)’

for v, positive integer

(62)

(63)

The values of l/B$, l/13,z, and I/fI,’ which satisfy the alge-

braic system (61) are the roots of the third order equation

AZ–M A’ + 2N – 3AN
@ _ &2 + x+

2
= 0.

6

VIII. CONCLUSION

We have presented a method of analysis of the general

nonuniform transmission line. In contrast with most of the

known methods, the present method does not require the

solution of any nonlinear differential equation. Secondly, the

present formulation leads naturally to the relationship be-

tween the natural frequencies of the line and the eigenvalues

of a Sturm-Liouville problem. Finally, the analytic proper-

ties of the network functions of nonuniform line are impor-

tant in the study of the realizability and the synthesis of

nonuniform lines.
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