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Analysis and Intrinsic Properties of the General
Nonuniform Transmission Line

EMMANUEL N. PROTONOTARIOS, MEMBER, IEEE, AND OMAR WING, MEMBER, IEEE

Abstract—A new formulation for the analysis of the general nonuni-
form transmission line is presented. A characterization of the line in terms
of its ABCD parameters is given. Explicit formulas for these parameters
are obtained from which any network function can be calculated to any
degree of accuracy. The new foermulation leads to a description of the line
in terms of a Sturm-Liouville equation from which all of the natural fre-
quencies of the line can be found and their distribution bounds and asymp-
totic behavior specified. The ABCD parameters are shown to be entire
functions of order 1 and genus 1.

I. INTRODUCTION

ONUNIFORM transmission lines have been used

i \"l extensively as impedance transformers and more
recently as resonators [1], [2] filters [3], and delay
equalizers [4]. Except for a few special cases, and for cases
in which the lines are “smooth,” no closed form solution
exists. The purpose of this paper is to present a new formula-
tion from which a general method of analysis and the in-
trinsic properties of an arbitrarily tapered transmission
line are deduced. In particular, a characterization of the line
in terms of its ABCD parameters is offered. Explicit formu-
las of these parameters are obtained from which any net-
work function can be evaluated to any degree of accuracy.
The new formulation leads also to a description of the line
in terms of a Strum-Liouville equation from which all of
the natural frequencies of the line can be found and their
distribution, bounds, and asymptotic behavior specified.
Finally, the analytic properties of the 4ABCD parameters are
derived, and it is shown that the parameters are all entire
functions of the complex frequencies of order 1 and genus 1.

There exists a large amount of excellent literature on non-
uniform transmission lines [23]-[25] and propagation
through nonuniform layers [26], [27]. Some of these
papers tackle the analysis problem for a given transmission
line through integral equation formulations without extract-
ing the properties of the network in general. Qur purpose
here is to present an analysis that would enable us to ex-
tract some intrinsic properties of the general nonuniform
lossless transmission line.

There exists also a large number of papers on the synthe-
sis of nonuniform transmission lines [23], [28]-[34]. The
authors have also considered the synthesis problem in an-
other paper [20] where they present realizability conditions
in the frequency domain,
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Fig. 1. A section of a nonuniform lossless transmission line.

1I. CHARACTERIZATION—EXPLICIT FORMULAS
FOR ABCD PARAMETERS

Consider a section of nonuniform lossless transmission
line (Fig. 1) having a series inductance per unit length X(x)
and a shunt capacitance per unit length ¢(x), 0<x <\, where
\ is the length of the line. Except for the obvious restriction
that /(x) and ¢(x) be non-negative everywhere, no other re-
strictions are imposed on /(x) and c(x). Indeed, both may
have impulses so that lumped elements as well as distributed
elements are allowed along the line.

We choose to study the terminal behavior of the line in
terms of its ABCD parameters. Let the length X be divided
into » intervals of equal length Ax=\/n. The ABCD param-
eters of the kth elementary section are

[Ak Bk:l [ 1 sAx-l(kAx)}
Ci Dil  LsAz-c(kAz) 1 ’
The overall ABCD parameters are

= lim .

Expanding the product and replacing sums by integrals, we
get the explicit formulas

A=14Y a.s™ 1)
n=1
A %3

B = sf Wz)dz + s Y bus™ (2)
0 n=1
by o0

¢ = sf c(@)dx + s D ¢ s (3)
o n=1

D =14 ds¥ 4)

n=1
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In a physical line, /(x) and ¢(x) are not identically zero and
I(x)>0 and ¢(x)>0, so that

a,>0,6,>0,¢.>0, and d, > 0.
Moreover, let I(x) and ¢(x) be bounded so that
Il{z) < Lg and e(x) < Ch.
We have, by integration,
(LoCor)»
S e
(LoCoA®) " Lok
T @+ 1)
(LoC N *CoN
AENCRNEY
(LoCoAH)™
" (2n)! .

Therefore, the four series (1), (2), (3), and (4) are all uni-
formly convergent and the ABCD parameters are entire
functions of s.

Having the explicit formulas of the ABCD parameters,
we can now evaluate any network function of the line,
terminated or unterminated. For example, the input im-
pedance is (4Z;+ B)/(CZ .+ D), where Z;, is the terminating
impedance. The input reflection coefficient is [(RC—A)Z,
+(RD—B))/[(RC+ A)Z 4+ (RD+ B)], where R is the source
impedance. Note that in contrast with the previous formula-
tion where the reflection coefficient and the input impedance
must be obtained from the solution of nonlinear differential
equations [5], [6] the present formulation leads to explicit
expressions which can be evaluated to any desired degree of
accuracy. Moreover, x) and ¢(x) need not_be continuous
functions of x. It should also be noticed that the series (1),
(2), (3), and (4) for 4, B, C, and D are alternating for s=jw
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and they are quite rapidly convergent for frequencies small
compared to the smallest natural frequency of the line short
circuited at both ends. For large frequencies the asymptotic
formulas developed in later sections of this paper should be
used. For intermediate frequencies the series (1), (2), (3),
and (4) may not be as rapidly convergent as the iterative
procedure presented in the literature [23]-[25] based on a
Volterra integral equation formulation. Yet, in contrast with
the latter, it gives explicit formulas and it should mainly be
viewed as a method which enables us to extract general
analytical properties of the nonuniform lines such as the
ones presented in the later sections of this paper. The pres-
ent method is also useful as a computational means since
it can very easily be incorporated in a computer program.
Note also that the coefficients {a.}, {b.}, {c.}, and {d,}
may be used for the computation of the natural frequencies
of a section of nonuniform line with an LC-impedance ter-
mination as described in Section 7. The derivation of the
series for A(s), B(s), C(s), and D(s) as outlined bere is ex-
tremely simple. The step-by-step method of Schelkunoff
[19] would yield identical reesults, Similar results for RC
nonuniform lines have been presented by the authors [35],
and by Hellstrom [22] independently.

II1. THE STURM-LIOUVILLE EQUATION

To gain a deeper insight into the properties of the gen-
eral nonuniform line, we shall transform the usual tele-
graphists’ equations into a Sturm-Liouville equation. To
this end, we make an important change of variables. We let

L@ = [ way ©

0@ = [ eta. (10)

L(x) is the cumulative inductance along the line, and C(x)
is the cumulative capacitance. Let the total inductance of
the line be Ly and the total capacitance be Cy. Clearly, we
have L(\)=Ly and CQ\)=Cr.

It is convenient to express C as a function of L. We define
a function o(L):

C =¢() = oL —0), for0 < L < Lr
a0) =0
o{Lr) = Cp 11)

so that o(L) implicitly specifies the nonuniformity of the

line. Note that
o (L) = do/dL = ¢/l = 1/K? (12)

where K(L) is the “local” characteristic impedance along the
line. o(L) is a nondecreasing function of L and, therefore,
it always has a unique inverse.

L=+C), CE®©C)
7(C) = dr/dC = lfe = K.

(13)
(14)
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Note that lumped shunt capacitors correspond to jumps of
o(L) and lumped series inductors correspond to jumps of
7(C) (Fig. 2). For an LC ladder network, ¢(L) is piecewise
constant (Fig. 3). Using o(L), we now have a unified de-
scription of general LC lumped ladder networks or distrib-
uted networks or mixed structures. The spatial variable has
been suppressed.

In terms of L and C, the usual telegraphists’ equations on
the voltage ¥ and current [ along the line are transformed
into Sturm-Liouville equations

v
— — 2 (L)V =0

Lz (15)

I
— — 8%/ (C)] = 0.

dC? {16)

Note that the equations are characterized by ¢’ and ' so
that nonuniform lines with the same C=o(L), LE(, Ly),
have identical electrical characteristics at the terminals, i.e.,
they are equivalent. For example, the following two non-
uniform lines have the same terminal behavior

1) U(z) = e, c(x) = 2¢=, A =[n2

2) I(z) =2z + 1), A =42 — 1.

c(x) =

@+ 1%

IV. NATURAL FREQUENCIES

Walker and Wax obtained an iterative scheme to compute
the natural frequencies of a tapered line with a reactive
termination [5]. Since any reactance can be represented by
an LC ladder of the Cauer form, the reactive termination
can be incorporated into the function (L) or +(C) in the
description of the nonuniform line and we may henceforth
regard all lines as unterminated.

We shall presently show that the natural frequencies of a
nonuniform line are the eigenvalues of a Sturm-Liouville
problem with zero boundary conditions and are in fact
related to the zeros of the ABCD parameters.

The zeros and poles of an impedance function are the
short-circuit and open-circuit natural frequencies, respec-
tively, of the network at the pertinent driving point. Since
A(s)/ C(s)=input impedance with output open-circuited and
B(s)/ D(s)=input impedance with output short-circuited, the
zeros of the parameters A(s), B(s), C(s), and D(s) are the
natural frequencies of the networks of Fig. 4(a), (b), (c), and
(d), respectively.

Denote by {a.}, {8.}, {7}, and {8.}, n=1,2, - - -,
respectively, the real frequencies for which the A(jw), B(jw),
C(jw), and D(jw) vanish. So that, 1) {a,,}, n=1,2,-.-,are
the natural frequencies of the section of the lossless trans-
mission line short-circuited at the sending end and open-cir-
cuited at the receiving end, [Fig. 4(a)], 2) {8. } ,a=1,2 ...,
are the natural frequencies of the line short-circuited at both
ends [Fig. 4(b)], 3) {'yn} are the natural frequencies of the
line open-circuited at both ends [Fig. 4(c)], and 4) é, are the
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Fig. 3. The function C=¢(L) for the ladder network (b).

natural frequencies of the line which is open-circuited at the
receiving end [Fig. 4(d)]. In the following we will be referring
to the natural frequencies of the different configurations of
the line as zeros of one of the ABC or D parameters.

With respect to Fig. 4(b) and from (15), the zeros of
B(s) are the eigenvalues of the following Sturm-Liouville
problem

y
— 2,/ =
dL2+uo(L)V—O

V() = V(L) = 0.
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Fig. 4. The boundary conditions.

(n 2)  (2) (n

Fig. 5. A back-to-back arrangement of a section of the line,

Similarly, the zeros of C(s) are the eigenvalues of the fol-
lowing Sturm-Liouville problem

2y
;l—é; + w2’ ()] =0

I1(0) = I(Cy) = 0.
As to the zeros of A(s) and D(s), we consider Fig. 5 which is
a back-to-back arrangement of identical halves coinciding

with the given section of the nonuniform LC transmission
line of Fig, 4.
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Let 4’, B, C’, and D’ be the chain parameters of the two-
port in Fig. 5. Then

B'(s) = 2A4(s)B(s)
C'(s) = 20(s) D(s).

(17)
(18)

It is known that the zeros of A(s) and B(s), as well as the
zeros of C(s) and D(s), interlace, so that

O<a<Hh<a<B< - (19)

and

0<51<"}'1<52<’Yz<"' (20)

Consequently, from relations (17), (18), (19), and (20) it fol-
lows that the zeros of A(s) are the odd-order zeros of B'(s),
and the zeros of D(s) are the odd-order zeros of C'(s).

Thus, the zeros of A(s) are the odd-order eigenvalues of the
following Sturm-Liouville boundary value problem with zero
boundary conditions at both ends:

2
—5 T (DY =0
0<L<2Ly
V() =V(Q@2Lr) =0

21

where for Ly <L <2Ly, o’(L)=o'(2Ly—L).
Whereas the zeros of D(s) are the odd-order eigenvalues of
the following Sturm-Liouville system:

d2

P 2./ —

d02+u1(0)1—0
0<C<L207

I(0) =1(2Cr) =0

(22)

where for Cr < C<2Cy, 7(C)=7(2Cr—C).

V. BounDs ON THE NATURAL FREQUENCIES

In the previous section, the zeros of the 4 BCD parameters
were identified with the eigenvalues of boundary value prob-
lems of the form

¥’ + wo@)y =0, y0) =yl) =0.

The mathematical literature on eigenvalue problems is vo-
luminous [7]-[18]. We shall make liberal use of many
results which are pertinent to the problem at hand.

5.1: Arbitrary nonuniform lossless transmission line with
specified total inductance Ly and total capacitance Cr.

In (23) denote [o(x)dx=M. It is well known [7], [14]-
[18] that the smallest eigenvalue ui[p] of the boundary value
problem (23) satisfies the inequality

(23)

o] = — (24)

= Val
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For the problem at hand and with respect to the first zero of
B(s) compare the differential equation (15) with (23). We
have: x—L, p(x)=¢'(L), a~sLy and M [f¢'(L)dL= Cr.
Therefore, applying (3.20) we have:
2
vV LrCr
This inequality is the best possible, i.e., there exist tapers for
which the value of 8, is arbitrarily close to 2/4/LyCy. In
fact, the equality is attained for the T-network in Fig. 6.
1t isknown [7], [14]-[18] that the higher-order eigenvalues
of the boundary value problem (23) satisfy the inequality

2n

812 (25)

o] > —= 26
pafo] —7 (26)
Comparing (15), (16), (21), and (22) with (23) we easily get
2n — 1
Qn, On = (27)
V/ LzCyr
s 1 = (28)
ny Yn 2 T ——=—
vV LyCr
n=12 ---

Equalities are attained for a,, 8., ¥, and &, for the ladder
networks in Fig. 7(a), (b), (¢), and (d), respectively.

5.2: As a second case, suppose that the only thing specified
about the taper is A= [/ Ie dx< LpCyp. Without any addi-
tional information about the taper it is not difficult to con-
struct examples showing that the product ;A can get arbi-
trarily small. However, the additional requirement that ¢//
is a non-negative monotonic function of L&L0, Ly] is suffi-
cient to produce a lower bound. In fact using the results of
Nehari {17] about the eigenvalues of the boundary value
problem (23) in the Sturm-Liouville equations (15) and (16),
we get, respectively,

> and oy > — 29
131_2A an ’71_2A (29)
Note that these inequalities are the best possible with the
present constraints [17]. In general, if ¢'(L)EILM0, Lr]and if
the interval [0, Lr] can be decomposed into k41 on which
o’(Ly=c¢/I is a monotonic function of L, the zeros obey the
following inequalities

80 > 0 — k — V)7/24; By, ve > (n — k)w/24A
forn > k.

5.3: Let Ly>0, Cr>0, Ky>0, K,,>0 be numbers sub-
ject to the condition

K.,?2 £ Lp/Cr £ Ku®

Consider the class of LC nonuniform transmission lines with
total series inductance Lz, total shunt capacita_rlce Cr, and
local characteristic impedance K(x)=+/I(x)/c(x) such that

K.< K@) £Ku

(30)
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Fig. 7. The ladders for which the natural frequencies are minimized.

—0

for 0<x<\. Denote this class of nonuniform lossless lines
by T(Ly, Cr, Kur, Ku). Since o'(L)=c/I=1/K¥L) we have

J

<o) <
Ku? K..*
i.e., all the points of the plot of the function C=¢(L) must
lie inside the parallelogram whose sides have slopes 1/K,2
and 1/Kj? and two of its vertices coincide with the origin
and the point (Ly, Cr), respectively (Fig. 8).
Consider the zeros of the ABCD parameters as functionals
of o(L). The problem is to find for what functions o(L)ET
(Lr, Cr, Ky, K») these zeros attain extreme values and to
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Fig. 8. Diagram for the class T (Lr, Cr, Ku, K).

determine the corresponding upper and lower bounds if they
exist. We can give the answers to this question using Krein’s
results [16] for the eigenvalues of the boundary value prob-
lem (23) where 2<p(x)< H.

The following theorem states the results.

Theorem 1:

For an LC transmission line ET(Lr, Cr, K, K.,) the maxi-
mum and minimum values of the ABCD parameters are
given by the following relations:

a) max a,(¢) = max §,(c)

2n — DK K
_ @n = DEx ¢<ﬂ, ﬁ) 31)
Q Kn @
min a,(¢) = min 5,(c)
@n—DK»n [(Kn @
e — (—* ; ﬁ) (32)
q Ky ¢
2}’LKM KM q
b) max B.(¢) = maxy.(o) = ¢<_’ ——) (33)
Q K. @
. . 2nK., K, Q
min B.(¢) = min v,(c) = ¢<——~; v~> (34)
q Ku g
where, with reference to Fig. 8,
Ku?*Cr — Ly Ly — K2Cr
=K =Ky ——— (35
! KoK O e ge

and ¢(p, O)(0<p, < ») is the least positive root of the
equation

tan ¢ tan (pb¢) = p (36)

(thus, 0<¢(p, 6) <m/2).

a) The lower bound of a;(s) and the upper bound of 6:(c)
are attained “uniquely” for 4/c/I with a bang-bang x varia-
tion, i.e., for
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LE©,Q)

L E (Q; LT) .
Note that, for this case, the plot of the function C=¢(L) is
the broken line OTIP of Fig. 8.

In general, the minimum of a.(s) and the maximum of
8.(c) are reached ““uniquely” for the following taper

@ B {KM for

K = o) K.

@37)

for

(L
K(L)= 2
(L)
2kL
Ky for L— Te<0, < )
2n—1 2n—1
2k Ly < Q 2q+Q)
={Kn. I — - , 38
T 1 \2n—1 2n—1 (38)
2kLyp 2Ly —Q 2LT>
K for L— ’
w T 2n—1€<2n—1 2n—1
where k=0, 1,2, - - -, (n—2); and
(L
K(L)= U
(L)
2(n—1)Lr Q
— —
Ky for L P \_<0’2n—1>
= . (39
2(n—1)Ly ( Q LT>
K, for L———& ,
2n—1 2n—1 2n—1

The upper bound of ai(s) and the lower bound of 8:(c) are
“uniquely” attained for C=o(L) whose plot is the broken
line OTP of Fig. 8, i.e., for

ix.
K
The maximum of a,(s), and simultaneously the minimum of
8.(c), are reached for +/I/c defined as in (39) and (40) with
Ky and K,, interchanged as well as Q and q.

b) The minimum of B8i(¢) and maximum of vi(s) are
achieved for the same symmetric taper:

c(L) B

for L& (0,q)

for L & (q, Lr). (40)

K({L) =

[0}

K(L) oD

I

Ky for LE (0, %)

= {Kn for LE(g:q—I—Q) (41)

2 YA

KM for LG(LT—%; LT>

Note that the plot of the function C=o(L) is the broken line
OKAMP in Fig,. 8.
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In general, if we divide the interval (0, Ly) into n equal
parts and in each of them define K(L) analogously to rela-
tion (41) using however ¢/n and Q/n instead of g and Q,
we get the “unique” function for which B8.(¢) reaches its
lower bound and v.(e) its upper bound.

If we interchange Q with ¢ and Ky, with K, in this defini-
tion we get the “unique™ taper €T(Lr, Cr, Kar, K») for which
B.(c) reaches its maximum and v,(s) its minimum value.
Note that for 81(¢): maximum and y,(¢): minimum the func-
tion C=o(L) is the piecewise linear curve OZANP of Fig. 8.

Remark 1: 1If a; is known, using the bounds (31), (32), and
the relation

Z 1/0[52 = a1
=1

we can find a sharper result for the interval where o; must
lie, i.e.,

1
0.2337Q?
ay — K 2
xeo(e 0]
K. @
< a2 < ! (42)
== 0.2338¢?
ay — K Q 2
[ ()]
where
2 0 1
02337 =" —1=% - .
8 ez (2n — 1)2

Similar results can be obtained for the first zero of B(s),
C(s), and D(s).

Remark 2: The special case where K= oo corresponds to
that in which lumped series inductances are allowed. The
bounds on the zeros, a,, 8., v, and §, can be obtained as
before. The case where K,,=0 corresponds to that in which
lumped shunt capacitances are allowed. A detailed discus-
sion of the bounds on the zeros of both cases is found in [20].

V1. AsyMPTOTIC BEHAVIOR OF THE ABCD PARAMETERS

Consider a nonuniform lossless transmission line for
which the local characteristic impedance K(z), expressed as

a function of the “electric” length z= [o*+/I(x)c(x")dx’, has -

a continuous second derivative. Using the Liouville trans-
formation [7], [11] we can transform the voltage tele-
graphists’ equation (15) into a differential equation of the
form

w4+ [p — q@]u = 0.

Using the mathematical results for the eigenfunctions of a
differential equation of this form [11] we can deduce the fol-
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lowing asymptotic expressions for the A BCD parameters on
the real-frequency axis; for w—:

i = g/ Eessoro()
B(jw) = VKK, sin Aw + 0 (i) (44)
1
C(]w) = -—\—/‘I—{—I{— sin Aw + 0 (—(»—) (45)
K. 1
D(jw) = /‘/% cos Aw + 0 <~;) (46)

where
A
Ki=K(0), K;=KQ), and A =f Ve dz.
0

Many authors have noted results of this kind before for
LC or RC lines [19]-[22]. If the line contains discontinuities
of lumped L’s or C’s we find the asymptotic behavior of the
ABCD parameters by dividing the line into sections for
which the above result is valid and multiply the correspond-
ing ABCD matrices.

Using the frequency transformation s—+/s, and referring
to some results for RC lines [20], [21], we can also make the
following statements:

Theorem 2:

For a finite section of a nonuniform lossless transmission
line with a piecewise twice differentiable ¢’(L), which con-
tains n lumped elements, inductances and capacitances (ex~
cluding possibly a shunt capacitor at x=0 and a series in-
ductor at x=2), the asymptotic behavior of A(s), for large s,
is

A(g) ~Ksrets, s w, |arg(s)| < % (47)
where K is a positive constant and
A o Ly o
A= f Vix)e(r) de = v o' (L) dL
0 0
Lt (48)
= K(L)dI.
0
Similarly,
B(s) ~ Ksm1gA%
C(s) ~ Kysnetligh’s (49)

D(s) ~ Kgsmea™

for s— oo, | arg (s)[ <w/4 where K1, K,, K; are positive con-
stants and 7y, n, n3 are the number of lumped elements ex-
cluding possibly: for n;, shunt capacitors at both ends; for
ny series inductors at both ends; and for n;, a series inductor
at x=0 and a shunt capacitor at n=AX.
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Corollary 1:
For real s—o

log A(s) ~ log B(s) ~ log C(s) ~log D(s) ~ As. (50)

Theorem 3:

The ABCD parameters of an arbitrarily tapered lossless
transmission line are entire functions of s of:

1) order p=1,

2) type o = A? = (f l\/l(x)c(cc) dx)z
0

= ( LTK(L)dL>2

and
3) genus=1.
They can be expanded into infinite products as follows:

wA®=ﬁO+iJ (51)

n=1

™
cand a, ~—
A

withd0 < a1 < as < az < - -

forn— » (52)
o0 2
b) B(s) = LTSH(l - ; 2> (53)
n=1 n
™
with0 <81 < <Bs < - -andBnN-A—
forn— o (54)
3 82
¢ Cls) = oTsH<1 + 2> (55)
n=1 Tn
™
with0 <11 <7m2<7:< -~ .WNK
forn— « (56)
® o =T1(1+5) -
n=1 n
™
forn — «. (58)

VII. COMPUTATION OF THE NATURAL FREQUENCIES

The sums of the even negative powers of the zeros of the
ABCD parameters can be expressed in terms of the coeffi-
cients of the series (1), (2), (3), and (4).
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Specifically we have:
21 © 1
2 — =0y > = a:* — 2a,,
n=1 On n=1 On
© 1
>, o= a1® — 3a102 + 3as, ete. (59)
n=1 On
21 by @ 1 bi2 — 2b,
Z _—= Z ———-;— = y
n=1 67» LT n=1 67; LT
hsd 1 b13 —_ 3b1b2 —l" 3b3
= »  ete. (60)
7§1 Bna LT

Similar relations hold for the zeros of D(s) and C(s).

An approximate method for the computation of the zeros
of the ABCD parameters can be based on (59) and (60).
Taking under consideration that, beginning with a suffi-
ciently large subscript, all zeros may be regarded as known,
L.e., as equal to their known asymptotic values, then an alge-
braic system of equations is obtained from (59), (60), etc.,
for the first few zeros.

To be specific, suppose that we want to compute approxi-
mately the first few zeros of B(s). The easiest asymptotic esti-
mate of 3, for large n, is B.~mn/A.

Suppose that this asymptotic formula gives a “good” ap-
proximate value of 8, beginning with n=4. Then we will
have for the first three zeros of B(s) the following algebraic
system.

1 1 1
B2 Bl B3
by = 1 N by A2 =2 1
B LT n=4 ﬂn2 :LT w2 n=4 n?
by A\?2
-2 (S)ren=A
bo T
1 1 1
8.t Ba2* Bs*
b12 — 2bs ©» 1 b2 — 2b2
=y e (61)
LT n=4 Bn LT
ANZ
- <~> ) =M
T
1 + 1 n 1
B1® Bs® Bs*

b1® — 3bibs + 3b3 hd
- X
T n=4

— (—3—)3{(6, 4) =N.

1 b1® — 3bibs + 3b3
Bn3 B LT
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Where (s, ») is the modified Riemann’s Zeta function
defined as follows

o 1

) =2, ——— 62
£(s, v) go -y (62)
for », positive integer
> 1
o) =2 —- (63)

The values of 1/82, 1/8%, and 1/8;* which satisfy the alge-
braic system (61) are the roots of the third order equation

A2—M A% 4+ 2N — 3AN
3 — Ax? + p x + 5 =0

VIII. CoNCLUSION

We have presented a method of analysis of the general
nonuniform transmission line. In contrast with most of the
known methods, the present method does not require the
solution of any nonlinear differential equation. Secondly, the
present formulation leads naturally to the relationship be-
tween the natural frequencies of the line and the eigenvalues
of a Sturm-Liouville problem. Finally, the analytic proper-
ties of the network functions of nonuniform line are impor-
tant in the study of the realizability and the synthesis of
nonuniform lines.
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